
State of
infrastructure drift

2021

What we learned asking

200 DevOps teams about infrastructure drift

Table of contents

About Drift

- Definition

- Main causes

The consequences of drift

- Impacts

- Frequency

- Time to fix

Current solutions and limitations

- What teams do

- Solutions / impact matrix

- Limitations

1
2

3

At Cloudskiff, we are working on protecting codified cloud

infrastructures.

We spoke to 200 infrastructure teams, to see what issues they

were facing. Keeping those infrastructures in sync and avoiding

drift is a real challenge for them. Indeed, drift has

consequences on toil and efficiency, forces teams to put in

place strict controls that decrease flexibility, and can have a

security impact.

In this study, we will describe our findings and a few options to

tackle drift. We interviewed 50+ teams to collect stories and

feedback, and surveyed 200 teams of all size.

How many people in your organization are actively building / maintaining infrastructure?

Introduction

■ Application and deployment induced drift is a widely spread

nuisance.

■ Security issues count among major concerns.

■ GitOps only can’t screen out drift.

Unexpected learnings

driftctl - all rights reserved 2021

Each solution comes with its
own limitations

There is no perfect solution to deal

with drift. Even a full GitOps

workflow with restricted access to

environments comes with a

tradeoff in terms of visibility,

flexibility or security and cannot

prevent non manual drift.

Security issues count among
the most important impacts of
drift

Drift has costly impacts for most

teams. It has consequences on toil

and efficiency and forces teams to

put in place strict controls that

decrease flexibility. Even more

noticeable is that close to 20% of

teams consider security issues the

most important impact of

infrastructure drift.

50% of teams are subjected to
infrastructure drift due to
unintentional / non manual
changes

For a vast majority of teams (96%)

the main cause of drift is when a

team member makes a manual

change through the Cloud

provider’s (AWS, Azure, etc)

console. But 50% of teams also

record drifts due to uncontrolled

changes, be it on the applications'

side, through the deployment stack

and/or on the cloud providers' side.

Key takeaways
Drilling down

What’s drift?

First, let us agree on a definition. Drift is a multi-faceted problem, but most of the people we talked to agreed on the following definition:

“Infrastructure drift is when there is an unwanted delta between the IaC code base and the actual state of the infrastructure.”

This issue becomes more and more complex as the number of environments grows. Some teams have dozens of environments that they need

to keep updated.

We identified three main causes of drift:

- 96% of teams: a team member makes a change through the (AWS, Azure, etc) console or directly updates infrastructure resources

through an application API.

- 44% of teams: a team member applies an IaC change to an environment but does not propagate it to other environments.

- 50% of teams: application and deployment induced drift.

While the first two are mostly workflow issues (we will come back to how some teams adjusted their workflow to reduce such behaviors, with

more or less success), the last one comes as a big surprise as regards its volume. We knew unintentional application

and deployment induced drift was a reality, but didn’t expect such a massive spread.

It is interesting to note though, that the third cause is completely independent of the DevOps team.

While unpredictable, this kind of change can cause massive headaches.

driftctl - all rights reserved 2021

A DevOps team lead told us this story:

after an Azure API update, all his

machines started denying access.

It took a while to find out that Azure’s API and

Terraform provider had been updated, and a new

“identity” parameter was now required to grant access.

Cloud Console

production sandboxstaging

main.tf
vpc.tf

7e3a0d6
c0de5b2
619b32f2

Environment drift

Developer drift

Cloud API updates /
Terraform provider drift

We heard testimonials of teams who experienced drift linked to an application. The behaviour of this kind of application is sometimes poorly

monitored, and can generate complex drift scenarios. In one interview, an internal app was updating EBS parameters.

Terraform plan does not show this, generating a false sense of control.

driftctl - all rights reserved 2021

A developer in the team thought that increasing the frequency of the

Datadog probe to once per minute would be cool, which is easy to do

through the GUI. That change remained unseen for a while and generated

huge costs, until the next datadog bill.

One SRE manager told us that he had Terraform-ed his

datadog monitoring, and thought everything was under

control there. Developers have access to Datadog - what’s

the point of monitoring if they don’t.

The truth that comes back about drift is

that once you think you have it under

control, you don’t.

The consequences of drift

Why does infrastructure drift matter?

Everybody seems to agree that drift is annoying, but we tried to

quantify its impact.

Drift mostly causes additional work, as well as security issues.

In one of our interviews, a DevOps lead analyzed the problem

quite clearly: every drift event causes uncertainty, a

resolution time, and a potential security issue.

Even more noticeable is that close to 20% of

teams consider security issues the most important

impact of infrastructure drift.

Beyond toil, security issues also rank among the most important impacts of drift

What is the impact of a drift event?
driftctl - all rights reserved 2021

There are also more subtle effects. To avoid excessive drift, some teams make significant adjustments to their workflows. In some teams, only

the team lead is allowed access to production. In others where developers are not skilled at IaC, getting a small change to environments done

goes through a painful and long ticketing system. In other words, drift causes issues, which leads to rigid / counterproductive processes, which

leads to a decrease in speed and flexibility.

When asked how often they have a drift event, roughly one-third of

teams face drift at least weekly, one-third monthly.

The last third is interesting: some teams do not know if and when

drift happens but when prompted all of them can relate a recent

drift event. In those teams, drift is a visibility issue: it is not tracked, or

measured, or observed, thus it cannot be kept under control or

improved.

How often do you have a drift event?
driftctl - all rights reserved 2021

We noticed that teams building new

products and infrastructure tend to face a

lot of drift in the early development

stage, because team members

experiment, change things through the

console, and don’t follow processes.

As time goes, and the infrastructure

matures, drift tends to happen less

frequently and change in nature.

But it does not mean the challenge is

solved.

driftctl - all rights reserved 2021

Then a run team of system administrators takes over the operation of the

infrastructure. They tend to be only casual Terraform users, and use the

console to make changes. This causes a lot of drift and manual

intervention to fix issues.

We heard stories from several service companies that

operate with a build & run model. A team of DevOps builds

the infrastructure for a customer. They tend to have good

Terraform skills and follow best practices such as work in

CI/CD.

We also polled DevOps about how long it took to solve a drift event.

Beyond the time spent, drift causes context switches and losses of

productivity. Important updates can be delayed because the team

lead is busy tracing back who made a change through the console,

and whether it is OK to override it with an apply or not.

Sometimes the author of the change themselves doesn’t remember

what the change was for.

driftctl - all rights reserved 2021
How much work does a drift event take to resolve, on average (hours)?

We have even heard of folks directly

modifying the Terraform state to cover up

for manual updates, which sometimes led

to problem escalation.

Most teams (60%) identified that to tackle drift, the first thing

they needed to do was restrict access to production to a few

team members. That does not solve the problem of staging

environments drift, as only 25% of teams restrict access to

staging environments: doing so requires being capable of and

paying for dedicated sandbox environments for developers.

Beyond that, some teams (30%) implement policies (using

OPA, or cloud-provider specific permission systems) to define

acceptable policies and behaviour. This prevents some of the

drift, but not all of it.

(illustration)Current solutions

Time to detect

Ti
m

e
to

 fi
x

What we found in our conversations was that drift always happens, and the key challenge is being able to detect

and analyze it in that case. The faster it is detected, the easier it is to remediate drift, which is why 30% of the DevOps

we interviewed had a terraform plan in a cron job.

Full GitOps workflow
terraform plan
in a CRON job

Restrict access to the
production environment

Restrict access to staging
environments

Prevents developer
generated drift

Prevents cloud-provider
generated drift

Makes drift visible

Analyzes drift root cause

Limitations

partially

partially

no no no no

Hard to rollout in legacy /
complex environments.

Terraform plan does not
“see” some changes

Decreases developer speed
or requires the cost and
capability of deploying
sandbox environments

no

no

yes no

no

no no

no no

yes

Solutions vs impacts in a nutshell

Limitations

Analyzing what solutions are deployed against drift in 200 teams led us to discover how poorly the topic is addressed.

- Deploying a full GitOps workflow is a good option in theory, but hard to do in practice for most teams as it

strictly limits access and thus lacks flexibility.

- Even with a full GitOps workflow, cloud provider updates, or any unintentional changes done to the infrastructure

through the cloud API cause drift.

- Running terraform plan (or the equivalent) catches some drift, but not all. Security groups are the best example of this.

Opening up a security group to all traffic through the console remains undetected in a Terraform plan, though it is a critical security

event.

- Restricting access to environments to prevent drift is a good option, but it comes with a tradeoff: developers

lose flexibility. It also requires that the team has enough Terraform bandwidth to effectively meet demands for infrastructure update.

Infrastructure as code is awesome, but there are so many moving parts: codebase,
*.tfstate , actual cloud resources. Things tend to drift.

driftctl is a free and open-source CLI that tracks, analyzes, prioritizes, and warns of infrastructure drift

More info at www.driftctl.com

About driftctl
Take control of infrastructure drift

http://www.driftctl.com

